metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.3D12, C3⋊2C2≀C4, (C2×D4).5D6, (S3×C23)⋊2C4, C4.D4⋊5S3, (C2×C12).13D4, C23.8(C4×S3), C23⋊2D6.4C2, C6.D4⋊3C4, (C22×C6).12D4, C6.11(C23⋊C4), C23.7D6⋊7C2, C22.12(D6⋊C4), (C6×D4).170C22, C2.12(C23.6D6), (C2×C4).1(C3⋊D4), (C22×C6).3(C2×C4), (C3×C4.D4)⋊11C2, (C2×C6).5(C22⋊C4), SmallGroup(192,34)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.3D12
G = < a,b,c,d,e | a2=b2=c2=1, d12=c, e2=a, ab=ba, ac=ca, dad-1=abc, ae=ea, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=acd11 >
Subgroups: 432 in 94 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, M4(2), C2×D4, C2×D4, C24, C24, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C23⋊C4, C4.D4, C22≀C2, D6⋊C4, C6.D4, C6.D4, C3×M4(2), C2×C3⋊D4, C6×D4, S3×C23, C2≀C4, C23.7D6, C3×C4.D4, C23⋊2D6, C23.3D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, C4×S3, D12, C3⋊D4, C23⋊C4, D6⋊C4, C2≀C4, C23.6D6, C23.3D12
Character table of C23.3D12
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 8A | 8B | 12A | 12B | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 2 | 4 | 4 | 12 | 12 | 2 | 4 | 24 | 24 | 24 | 2 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -i | i | -1 | 1 | 1 | -1 | 1 | -i | i | -1 | -1 | i | -i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | i | -i | -1 | 1 | 1 | -1 | 1 | i | -i | -1 | -1 | -i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -i | i | 1 | 1 | 1 | -1 | 1 | i | -i | -1 | -1 | -i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | i | -i | 1 | 1 | 1 | -1 | 1 | -i | i | -1 | -1 | i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -2 | -2 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | -1 | -2 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 0 | 0 | 1 | 1 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ14 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | -1 | -2 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 0 | 0 | 1 | 1 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ15 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | -2i | 2i | 1 | 1 | -i | i | i | -i | complex lifted from C4×S3 |
ρ16 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 2i | -2i | 1 | 1 | i | -i | -i | i | complex lifted from C4×S3 |
ρ17 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 0 | 0 | -1 | -1 | -√-3 | -√-3 | √-3 | √-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 0 | 0 | -1 | -1 | √-3 | √-3 | -√-3 | -√-3 | complex lifted from C3⋊D4 |
ρ19 | 4 | -4 | 0 | 0 | 0 | 2 | -2 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | -2 | 2 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ21 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2√-3 | -2√-3 | 0 | 0 | 0 | 0 | complex lifted from C23.6D6 |
ρ23 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -2√-3 | 2√-3 | 0 | 0 | 0 | 0 | complex lifted from C23.6D6 |
ρ24 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 7)(2 20)(3 21)(4 10)(5 11)(6 24)(8 14)(9 15)(12 18)(13 19)(16 22)(17 23)
(2 14)(4 16)(6 18)(8 20)(10 22)(12 24)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)
(1 6 7 24)(2 11 20 5)(3 4 21 10)(8 17 14 23)(9 22 15 16)(12 13 18 19)
G:=sub<Sym(24)| (1,7)(2,20)(3,21)(4,10)(5,11)(6,24)(8,14)(9,15)(12,18)(13,19)(16,22)(17,23), (2,14)(4,16)(6,18)(8,20)(10,22)(12,24), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24), (1,6,7,24)(2,11,20,5)(3,4,21,10)(8,17,14,23)(9,22,15,16)(12,13,18,19)>;
G:=Group( (1,7)(2,20)(3,21)(4,10)(5,11)(6,24)(8,14)(9,15)(12,18)(13,19)(16,22)(17,23), (2,14)(4,16)(6,18)(8,20)(10,22)(12,24), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24), (1,6,7,24)(2,11,20,5)(3,4,21,10)(8,17,14,23)(9,22,15,16)(12,13,18,19) );
G=PermutationGroup([[(1,7),(2,20),(3,21),(4,10),(5,11),(6,24),(8,14),(9,15),(12,18),(13,19),(16,22),(17,23)], [(2,14),(4,16),(6,18),(8,20),(10,22),(12,24)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)], [(1,6,7,24),(2,11,20,5),(3,4,21,10),(8,17,14,23),(9,22,15,16),(12,13,18,19)]])
G:=TransitiveGroup(24,338);
(2 14)(3 15)(6 18)(7 19)(10 22)(11 23)
(2 14)(4 16)(6 18)(8 20)(10 22)(12 24)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)
(1 24)(2 11 14 23)(3 22 15 10)(4 21)(5 20)(6 7 18 19)(8 17)(9 16)(12 13)
G:=sub<Sym(24)| (2,14)(3,15)(6,18)(7,19)(10,22)(11,23), (2,14)(4,16)(6,18)(8,20)(10,22)(12,24), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24), (1,24)(2,11,14,23)(3,22,15,10)(4,21)(5,20)(6,7,18,19)(8,17)(9,16)(12,13)>;
G:=Group( (2,14)(3,15)(6,18)(7,19)(10,22)(11,23), (2,14)(4,16)(6,18)(8,20)(10,22)(12,24), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24), (1,24)(2,11,14,23)(3,22,15,10)(4,21)(5,20)(6,7,18,19)(8,17)(9,16)(12,13) );
G=PermutationGroup([[(2,14),(3,15),(6,18),(7,19),(10,22),(11,23)], [(2,14),(4,16),(6,18),(8,20),(10,22),(12,24)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)], [(1,24),(2,11,14,23),(3,22,15,10),(4,21),(5,20),(6,7,18,19),(8,17),(9,16),(12,13)]])
G:=TransitiveGroup(24,342);
Matrix representation of C23.3D12 ►in GL6(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 72 | 0 | 72 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 72 | 72 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
30 | 43 | 0 | 0 | 0 | 0 |
30 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 72 | 72 | 72 | 71 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
30 | 43 | 0 | 0 | 0 | 0 |
13 | 43 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 1 | 1 | 1 | 2 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 72 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,72,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,72,0,0,0,1,0,72,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[30,30,0,0,0,0,43,60,0,0,0,0,0,0,0,72,0,0,0,0,0,72,72,1,0,0,1,72,0,0,0,0,0,71,0,1],[30,13,0,0,0,0,43,43,0,0,0,0,0,0,0,1,72,0,0,0,0,1,0,72,0,0,72,1,0,0,0,0,0,2,0,72] >;
C23.3D12 in GAP, Magma, Sage, TeX
C_2^3._3D_{12}
% in TeX
G:=Group("C2^3.3D12");
// GroupNames label
G:=SmallGroup(192,34);
// by ID
G=gap.SmallGroup(192,34);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,422,184,346,297,851,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^12=c,e^2=a,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*c*d^11>;
// generators/relations
Export